

Software Design Document for the Land Information System

Submitted under Task Agreement GSFC-CT-2

Cooperative Agreement Notice (CAN) CAN-00OES-01

Increasing Interoperability and Performance of Grand Challenge
Applications in the Earth, Space, Life, and Microgravity Sciences

Version 1.0

Revision history:
Version Summary of Changes Date
1.0 Initial release. 8/13/02

Land Information System Software Design Document Version 1: 8/13/02

ii

Table of Contents

Table of Contents .. ii
List of Figures...iii
List of Tables ..iii
Acronyms and Terms... iv
Acronyms and Terms... iv
1 Introduction .. 1

1.1 Purpose and goals.. 1
1.2 Scope ... 1

2 Land Surface Modeling and Data Assimilation .. 2
2.1 Land Data Assimilation System (LDAS).. 2
2.2 Community Land Model (CLM)... 3
2.3 The Community NOAH Land Surface Model .. 4
2.4 Variable Infiltration Capacity (VIC) Model.. 4

3 LIS software architecture.. 5
3.1 Software data structures .. 7

4 Hardware Platforms for LIS... 9
4.1 LIS cluster architecture ... 9
4.2 Network traffic estimation within the cluster.. 10

5 High performance computing in LIS ... 11
5.1 Parallel processing in land surface modeling.. 12
5.2 Land surface modeling in LIS... 12

5.2.1 Structure of land surface modeling component.. 12
5.2.2 Implementation of land surface modeling component..................................... 13

5.3 Compute node job processing ... 14
5.4 IO node job processing.. 15

6 Data Management in LIS .. 17
6.1 Data flow and volume in LIS .. 17
6.2 GrADS-DODS server structure... 20
6.3 Description for data retrieving component.. 21

6.3.1 Implementation... 21
7 Description for system monitoring component ... 22

7.1 Hardware monitoring data... 22
7.2 Architecture and implementation .. 23

8 User interface design.. 24
8.1 User interface components .. 24
8.2 Sample prototype interface.. 25
8.3 User levels and security design ... 27

References .. 29
Appendix A .. 31

List of LDAS variables passed between the modules (Following ALMA Convention)
... 31

Appendix B .. 32
Sample input card file for the execution of LIS model run... 32

Land Information System Software Design Document Version 1: 8/13/02

iii

List of Figures

Figure 1: Current Land Data Assimilation System (LDAS) structure. It uses CLM and
NOAH land models. .. 6

Figure 2: Overview of LIS software architecture and its components designed for LIS
cluster. A subset of the components, the LDAS and parallel computing
implementation, will also be tested on SGI Origin platforms..................................... 7

Figure 3: The physical architecture of the LIS Linux cluster. The cluster has 8 IO nodes
and 192 compute nodes. Each IO node has dual Athlon CPUs, 2GB RAM and
Gigabit NICs, and each compute node has a single Athlon CPU , 512MB RAM and
a Fast Ethernet NIC. .. 9

Figure 4: Network traffic estimation within the cluster. The traffic is dominated by the
output data flow from the compute nodes to the IO nodes. The output data will go
through two network links: Link A, from a compute node to an Ethernet switch;
Link B, from the switch's gigabit port to an IO node.. 10

Figure 5: LIS land surface modeling architecture with ALMA and ESMF interfaces 13
Figure 6: LIS land surface modeling flowchart. ... 14
Figure 7: Compute nodes flowchart for parallel computing of land surface modeling. A

compute node does not communicate to other compute nodes. 15
Figure 8: Parallel computing control flowchart (left) and parallelization scheme (right) of

a master node... 16
Figure 9: LIS global logical data flow on LIS Linux cluster. Physically, the IO nodes for

input data and output data on the two sides of the cluster are the same IO node
computers. On SGI, the flow is similar, except the IO nodes will be replaced by
local hard disks, and the compute nodes will be replaced by CPUs. GrADS-DODS
servers will not be used on SGI. Instead, the data will be pre-staged. 18

Figure 10: GrADS-DODS server architecture. ... 21
Figure 11: LIS system monitoring and management architecture for the LIS Linux

cluster. This system will not be implemented on SGI since it is not under our
control.. 24

Figure 12: LIS user interface architecture... 25
Figure 13: Sample of web-based user interface objects. ... 26
Figure 14: Screenshot of LIS web entry page. .. 27

List of Tables

Table 1: LIS global data files .. 19
Table 2: Hardware monitoring and management data collection 23
Table 3: Configurable GrADS-DODS parameters for access to level 2 users of LIS 28

Land Information System Software Design Document Version 1: 8/13/02

iv

Acronyms and Terms

ALMA: Assistance for Land-surface Modeling Activities

API: Application Programming Interface

CGI: Common Gateway Interface

CLM: Community Land Model

DODS: Distributed Ocean Data System

ESMF: Earth System Modeling Framework

GrADS: Grid Analysis and Display System

LDAS: Land Data Assimilation System

LIS: Land Information System

MRTG: Multi Router Traffic Grapher

NFS: Network File System

NOAH: National Centers for Environmental Prediction, Oregon State University, United
States Air Force, and Office of Hydrology Land Surface Model

PXE: Preboot Execution Environment

RAID: Redundant Array of Inexpensive Disks

SNMP: Simple Network Management Protocol

VIC: Variable Infiltration Capacity Land Surface Model

Land Information System Software Design Document Version 1: 8/13/02

1

1 Introduction

 This Software Design Document establishes the software design for the Land
Information System (LIS). LIS is a project to build a high-resolution, high-performance
land surface modeling and data assimilation system to support a wide range of land
surface research activities and applications.

 This document has been prepared in accordance with the requirements of the Task
Agreement GSFC-CT-2 under Cooperative Agreement Notice CAN-00-OES-01
Increasing Interoperability and Performance of Grand Challenge Applications in the
Earth, Space, Life, and Microgravity Sciences, funded by NASA’s ESTO Computational
Technologies (formerly High Performance Computing and Communications) Project.

1.1 Purpose and goals

 This document serves as the blueprint for the software development and
implementation of the Land Information System (LIS).

 The design goals of LIS are near real-time, high-resolution (up to 1km) global land data
simulation executed on highly parallel computing platforms, with well defined, standard-
conforming interfaces and data structures to interface and inter-operate with other Earth
system models, and with flexible and friendly web-based user interfaces.

1.2 Scope

 This document covers the design of all the LIS software components for the three-year
duration of the LIS project. The document focuses primarily on the implementation of
the LIS software on a general-purpose Linux cluster system, and most of the component
designs also apply to an SGI Origin 3000 system. This document does not cover design
for other hardware/software platforms.

 Specifically, this design covers the following aspects of LIS:

• Realistic land surface modeling. LIS will simulate the global land surface
variables using various land surface models, driven by atmospheric “forcing data”
(e.g., precipitation, radiation, wind speed, temperature, humidity) from various
sources.

• High performance computing. LIS will perform high-performance, parallel
computing for near real-time, high-resolution land surface modeling research and
operations.

• Efficient data management. The high-resolution land surface simulation will
produce a huge data throughput, and LIS will retrieve, store, interpolate, re-
project, sub-set, and backup the input and output data efficiently.

Land Information System Software Design Document Version 1: 8/13/02

2

• Usability. LIS will provide intuitive web-based interfaces to users with varying
levels of access to LIS data and system resources, and enforce user security
policies.

• Interoperable and portable computing. LIS will incorporate the ALMA
(Assistance for Land surface Modeling Activities) and ESMF (Earth System
Modeling Framework) standards to facilitate inter-operation with other Earth
system models. In order to demonstrate portability of LIS, the land surface
modeling component will be implemented on a custom-designed Linux cluster
and an SGI Origin 3000.

2 Land Surface Modeling and Data Assimilation

 In general, land surface modeling seeks to predict the terrestrial water, energy and
biogeochemical processes by solving the governing equations of the soil-vegetation-
snowpack medium. Land surface data assimilation seeks to synthesize data and land
surface models to improve our ability to predict and understand these processes. The
ability to predict terrestrial water, energy and biogeochemical processes is critical for
applications in weather and climate prediction, agricultural forecasting, water resources
management, hazard mitigation and mobility assessment.

In order to predict water, energy and biogeochemical processes using (typically 1-D
vertical) partial differential equations, land surface models require three types of inputs:
1) initial conditions, which describe the initial state of land surface; 2) boundary
conditions, which describe both the upper (atmospheric) fluxes or states also known
as "forcings" and the lower (soil) fluxes or states; and 3) parameters, which are a function
of soil, vegetation, topography, etc., and are used to solve the governing equations.

The proposed LIS framework will include various components that facilitate global land
surface modeling within a data assimilation system framework. The main software
components of the system are:

• LDAS (Land Data Assimilation System) : is a software system that integrates the
use of land surface models in a data assimilation framework.

• Land surface Models : LIS will include 3 different land surface models, namely,
CLM, NOAH, and VIC.

These components are explained in detail in the following sections.

2.1 Land Data Assimilation System (LDAS)

 LDAS is a model control and input/output system (consisting of a number of
subroutines, modules written in Fortran 90 source code) that drives multiple offline one
dimensional land surface models (LSMs) using a vegetation defined "tile" or "patch"
approach to simulate sub-grid scale variability. The one-dimensional LSMs such as CLM
and NOAH, which are subroutines of LDAS, apply the governing equations of the
physical processes of the soil-vegetation-snowpack medium. These land surface models
aim to characterize the transfer of mass, energy, and momentum between a vegetated
surface and the atmosphere.

Land Information System Software Design Document Version 1: 8/13/02

3

 LDAS makes use of various satellite and ground based observation systems within a
land data assimilation framework to produce optimal output fields of land surface states
and fluxes. The LSM predictions are greatly improved through the use of a data
assimilation environment such as the one provided by LDAS. In addition to being forced
with real time output from numerical prediction models and satellite and radar
precipitation measurements, LDAS derives model parameters from existing topography,
vegetation and soil coverages. The model results are aggregated to various temporal and
spatial scales, e.g., 3 hourly, 0.25 deg x 0.25 deg.

 The execution of LDAS starts with reading in the user specifications. The user selects
the model domain and spatial resolution, the duration and timestep of the run, the land
surface model, the type of forcing from a list of model and observation based data
sources, the number of ``tiles' per grid square (described below), the soil parameterization
scheme, reading and writing of restart files, output specifications, and the functioning of
several other enhancements including elevation correction and data assimilation.

 The system then reads the vegetation information and assigns subgrid tiles on which to
run the one-dimensional simulations. LDAS runs its 1-D land models on vegetation-
based "tiles" to simulate variability below the scale of the model grid squares. A tile is
not tied to a specific location within the grid square. Each tile represents the area covered
by a given vegetation type.

 Memory is dynamically allocated to the global variables, many of which exist within
Fortran 90 modules. The model parameters are read and computed next. The time loop
begins and forcing data is read, time/space interpolation is computed and modified as
necessary. Forcing data is used to specify boundary conditions to the land surface model.
The LSMs in LDAS are driven by atmospheric forcing data such as precipitation,
radiation, wind speed, temperature, humidity, etc., from various sources. LDAS applies
spatial interpolation to convert forcing data to the appropriate resolution required by the
model. Since the forcing data is read in at certain regular intervals, LDAS also temporally
interpolates time average or instantaneous data to that needed by the model at the current
timestep. The selected model is run for a vector of ``tiles'', intermediate information is
stored in modular arrays, and output and restart files are written at the specified output
interval.

2.2 Community Land Model (CLM)

 CLM (Community Land Model) is a 1-D land surface model, written in Fortran 90,
developed by a grass-roots collaboration of scientists who have an interest in making a
general land model available for public use. LDAS currently uses CLM version 1.0,
formerly known as the Common Land Model. CLM version 2.0 was released in May
2002 and will be implemented in future version of LDAS/LIS. The source code for CLM
2.0 is freely available from the National Center for Atmospheric Research (NCAR)
(http://www.cgd.ucar.edu/tss/clm/). The CLM is used as the land model for the
Community Climate System Model (CCSM) (http://www.ccsm.ucar.edu/), which
includes the Community Atmosphere Model (CAM) (http://www.cgd.ucar.edu/cms/).
CLM is executed with all forcing, parameters, dimensioning, output routines, and

http://www.ccsm.ucar.edu/

Land Information System Software Design Document Version 1: 8/13/02

4

coupling performed by an external driver of the user's design (in this case done by
LDAS). CLM requires pre-processed data such as the land surface type, soil and
vegetation parameters, model initialization, and atmospheric boundary conditions as
input. The model applies finite-difference spatial discretization methods and a fully
implicit time-integration scheme to numerically integrate the governing equations. The
model subroutines apply the governing equations of the physical processes of the soil-
vegetation-snowpack medium, including the surface energy balance equation, Richards'
(1931) equation for soil hydraulics, the diffusion equation for soil heat transfer, the
energy-mass balance equation for the snowpack, and the Collatz et al. (1991) formulation
for the conductance of canopy transpiration.

2.3 The Community NOAH Land Surface Model

 The community NOAH Land Surface Model is a stand-alone, uncoupled, 1-D column
model freely available at the National Centers for Environmental Prediction (NCEP;
ftp://ftp.ncep.noaa.gov/pub/gcp/ldas/noahlsm/). The name is an acronym representing the
various developers of the model (N: NCEP; O: Oregon State University, Dept. of
Atmospheric Sciences; A: Air Force (both AFWA and AFRL - formerly AFGL, PL); and
H: Hydrologic Research Lab - NWS (now Office of Hydrologic Dev -- OHD)). NOAH
can be executed in either coupled or uncoupled mode. It has been coupled with the
operational NCEP mesoscale Eta model (Chen et al., 1997) and its companion Eta Data
Assimilation System (EDAS) (Rogers et al., 1996), and the NCEP global Medium-Range
Forecast model (MRF) and its companion Global Data Assimilation System (GDAS).
When NOAH is executed in uncoupled mode, near-surface atmospheric forcing data
(e.g., precipitation, radiation, wind speed, temperature, humidity) is required as input.
NOAH simulates soil moisture (both liquid and frozen), soil temperature, skin
temperature, snowpack depth, snowpack water equivalent, canopy water content, and the
energy flux and water flux terms of the surface energy balance and surface water balance.
The model applies finite-difference spatial discretization methods and a Crank-Nicholson
time-integration scheme to numerically integrate the governing equations of the physical
processes of the soil vegetation-snowpack medium, including the surface energy balance
equation, Richards’ (1931) equation for soil hydraulics, the diffusion equation for soil
heat transfer, the energy-mass balance equation for the snowpack, and the Jarvis (1976)
equation for the conductance of canopy transpiration.

2.4 Variable Infiltration Capacity (VIC) Model

Variable Infiltration Capacity (VIC) model is a macroscale hydrologic model, written in
C, being developed at the University of Washington and Princeton University. The VIC
code repository along with the model description and source code documentation is
publicly available at
http://www.hydro.washington.edu/Lettenmaier/Models/VIC/VIChome.html. VIC is used
in macroscopic land use models such as SEA - BASINS
(http://boto.ocean.washington.edu/seasia/intro.htm). VIC is a semi-distributed, grid-based
hydrological model, which parameterizes the dominant hydrometeorological processes
taking place at the land surface - atmospheric interface. The execution of VIC model
requires preprocessed data such as precipitation, temperature, meteorological forcing, soil

http://www.hydro.washington.edu/Lettenmaier/Models/VIC/VIChome.html
http://boto.ocean.washington.edu/seasia/intro.htm

Land Information System Software Design Document Version 1: 8/13/02

5

and vegetation parameters, etc. as input. The model uses three soil layers and one
vegetation layer with energy and moisture fluxes exchanged between the layers. The
VIC model represents surface and subsurface hydrologic processes on a spatially
distributed (grid cell) basis. Partitioning grid cell areas to different vegetation classes can
approximate sub-grid scale variation in vegetation characteristics. VIC models the
processes governing the flux and storage of water and heat in each cell-sized system of
vegetation and soil structure. The water balance portion of VIC is based on three
concepts:

1) Division of grid-cell into fraction sub-grid vegetation coverage.
2) The variable infiltration curve for rainfall/runoff partitioning at the land
surface.
3) A baseflow/deep soil moisture curve for lateral baseflow.

Water balance calculations are preformed at three soil layers and within a vegetation
canopy. An energy balance is calculated at the land surface. A full description of
algorithms in VIC can be found in the references listed at the VIC website.

3 LIS software architecture

This section describes the software architecture of the components of LIS. The proposed
LIS framework will have the following functional components: (1) A system for high
resolution global land data assimilation system, involving several land surface models,
and land data assimilation technologies. (2) A web-based user interface that accesses data
mining, numerical modeling and visualization tools. To facilitate these features, LIS will
integrate the use of various software systems such as LDAS, land surface models,
GrADS – DODS, etc. LIS is also expected to act as a framework that enables the land
surface modeling community to define new standards and also to assist in the definition
and demonstration of the ESMF. As a result, the design of LIS will also feature the
incorporation of new standards and specifications such as ALMA and ESMF.

Figure 1 shows the LDAS software architecture. As mentioned earlier, currently LDAS
includes CLM and NOAH land surface models. VIC land surface model will be
incorporated in the future versions of LDAS and LIS.

Figure 2 presents the LIS software architecture. It can be noticed that LIS will be built
upon the existing LDAS, with new components and expanded functionalities for the
support of parallel processing, GrADS-DODS server-based data management, ALMA
and ESMF-compliance, web-based user interfaces, and system management of a Linux
cluster platform

The function of LIS dictates a highly modular system design and requires all the
modules, or components, to work together smoothly and reliably. Figure 2 shows an
overview of the LIS software architecture and its components, and their interactions. LIS
will continuously take in relevant atmospheric observational data, and will subsequently
use it to force the land surface models, and the land surface simulation is carried out in a
highly parallel fashion. Meanwhile the large amount of output data will be efficiently
managed to facilitate reliable and easy access. Moreover, LDAS, its interface to the three

Land Information System Software Design Document Version 1: 8/13/02

6

land models (CLM, NOAH, and VIC), and its input/output modules, will conform ESMF
standards, while the output data variables and formats, and the variables passed between
LDAS and the three land models, will follow ALMA specification. Finally, LIS also has
software components to manage the parallel job processing and monitor hardware status
and manage them to ensure sustained high performance output and high availability in
the Linux cluster environment. Following is a list of LIS software components:

• Land surface modeling: LDAS and the three land models – CLM, NOAH and
VIC. LDAS can be configured to run one, two or all the three land models at the
same time.

• Parallel processing: implementation of the parallelization scheme.
• GrADS-DODS server
• Data retrieving
• System monitoring: only applies to the LIS cluster environment.

By the use of modular programming and by conforming to well established standards
such as ALMA and ESMF, LIS is expected to provide a flexible, extensible framework to
land surface modelers and researchers.

Raw data on the Internet

Data
retrieving

Input Output

LDAS

To atmospheric models

Input
data

Output
data

Single-
processor
platform

CLM NOAH

Figure 1: Current Land Data Assimilation System (LDAS) structure. It uses CLM and NOAH land

models.

Land Information System Software Design Document Version 1: 8/13/02

7

Raw data on the Internet

Data
retrieving

GrADS-
DODS
server

GrADS-
DODS
server

Input Output

ESMF-compliant LDAS

Parallelization scheme

Cluster
system
monitor

Web-
based
user

interface

Parallel
comput’g
control

System
manage-

ment
interface

To atmospheric models

Input
data

Output
data

ALMA standard

ESMF standard

Parallel computing hardware platform
(SGI Origin 3000 or Linux cluster)

LIS users

System management
console

CLM NOAH VIC

Figure 2: Overview of LIS software architecture and its components designed for LIS cluster. A

subset of the components, the LDAS and parallel computing implementation, will also be tested on
SGI Origin platforms.

3.1 Software data structures

This section describes the internal software data structures in LIS. As described earlier,
the main component that drives different LSMs is LDAS. The one-dimensional land
surface models such as CLM, NOAH, and VIC are included as subroutines of LDAS.
LDAS, CLM, and NOAH are written in Fortran 90 and these land surface models are
interfaced in LDAS through well defined drivers. LDAS code is designed in a modular
fashion, with a number of modules used to encapsulate data as well as parameters that are
used to solve different governing equations. Please refer to the LDAS code
documentation (http://lis.gsfc.nasa.gov/docs/LDAS-Doc/ldas2) for a detailed description
of the source code.

A brief description of the modules are presented below:

LDAS Modules
grid_module: This module is an abstract representation of a "grid" used in LDAS. The
module includes non model specific parameters such as lat/lon, land/water masks of grid,
input/output forcing variables, and variables for temperature assimilation and correction.
This module is used by the LDAS main driver and subroutines that are associated with
non-model specific computations.

tile_module : This module is a representation of the "tile" described in section 2.1 that is
used to simulate sub-grid scale variability. This module includes specification of non-
model specific tile variables, such as lat/lon of tile, row/column of tile and properties
such as canopy conductance, aerodynamic conductance of the tile.

http://lis.gsfc.nasa.gov/docs/LDAS-Doc/ldas2

Land Information System Software Design Document Version 1: 8/13/02

8

ldas_module : This module specifies the variables used in LDAS driver such as the
model domain specifications, type of land surface model used, type of forcing,
specification of source files, etc. It does not include specification of tile space or grid
space variables. This module is used by the main driver and subroutines that perform
non-model specific computations such as spatial/temporal interpolation.

Driver Modules

The driver modules encapsulate the variables and data types that are involved in the
interfacing of land surface models to LDAS. More specifically, they are:

CLM driver modules

drv_module : This module is for the one-dimensional land driver variable specification
for CLM. It includes CLM specific parameters such as the driver parameters, timing and
diagnostic parameters, etc.

drv_gridmodule : This module is used for the grid space variable specification for CLM.
It includes CLM forcing parameters, CLM vegetation parameters, CLM soil parameters,
etc.

drv_tilemodule : This module includes tile space variable specification for CLM.

clmtype : This is a module for the one-dimensional CLM variable specification. It
includes CLM specific parameters such as water, snow, energy fluxes, soil, vegetation
parameters, etc.

NOAH driver modules

noah_module : This module specifies one-dimensional NOAH land driver variable
specification. It includes NOAH state parameters, output variables, etc.

VIC structures

VIC includes a number of structures that are used to encapsulate model options, forcing
parameters, global simulation parameters, soil and vegetation parameters, etc. The main
structures are:

option_struct : This structure is used to store model options.
global_param_struct : This structure is used to store the global parameters defined for
the current simulation.
soil_con_struct : This structure is used to store the constant variables for the soil in the
current grid cell.
veg_con_struct : This structure is used to store all constant parameters for the vegetation
types in the current grid cell.
atmos_data_struct : This structure is used to store the meterological forcing data for
each time step.

Land Information System Software Design Document Version 1: 8/13/02

9

cell_data_struct : This structure is used to store the grid cell specific variables, not
included in the vegetation structures.
energy_bal_struct : This structure is used to store all variables used to compute the
energy balance and soil thermal fluxes.
snow_data_struct: This structure is used to store all variables used by the snow
accumulation and ablation algorithm, and the snow interception algorithm.

4 Hardware Platforms for LIS

This section describes the hardware operational platforms intended for LIS. The SGI
Origin 3000 will be used to implement and demonstrate only the high resolution, parallel,
global land surface modeling and data assimilation components
(LDAS/CLM/NOAH/VIC) of LIS. The fully operational LIS (with user interfaces and
visualization components such as GrADS - DODS) will be demonstrated on a custom
designed Linux cluster. The following section describes the hardware design of the
cluster.

4.1 LIS cluster architecture

Internet

Gigabit Ethernet

24
 c

om
pu

tin
g

no
de

s

24-port 10/100 switches
with gigabit uplink

Node

Node

Node

Node

Node

Node

Node

…
 ...

Node

Node

Node

Node

Node

Node

Node

…
 ...

Node

Node

Node

Node

Node

Node

Node

…
 ...

Node

Node

Node

Node

Node

Node

Node

…
 ...

Node

Node

Node

Node

Node

Node

Node

…
 ...

Node

Node

Node

Node

Node

Node

Node

…
 ...

Node

Node

Node

Node

Node

Node

Node

…
 ...

Node

Node

Node

Node

Node

Node

Node

…
 ...

Internet

IO Node 0 IO Node 1 IO Node 2 IO Node 3 IO Node 4 IO Node 5 IO Node 6 IO Node 7

Figure 3: The physical architecture of the LIS Linux cluster. The cluster has 8 IO nodes and 192
compute nodes. Each IO node has dual Athlon CPUs, 2GB RAM and Gigabit NICs, and each
compute node has a single Athlon CPU , 512MB RAM and a Fast Ethernet NIC.

Land Information System Software Design Document Version 1: 8/13/02

10

 Figure 3 shows the physical architecture of the LIS Linux cluster. The cluster consists
of 192 computing nodes. The cluster also includes 8 IO (input – output) nodes,
specifically to handle the huge data management requirements. These nodes are
interconnected with 8 Ethernet switches.

 The 192 computing nodes are divided into 8 sub-clusters, with 24 nodes in each sub-
cluster, interconnected with fast Ethernet via one of the 8 24-port fast Ethernet switches.
Each switch also has two gigabit ports to connect the 8 IO nodes and the other switches.

 The use of 8 sub-clusters and 8 IO nodes is mainly for the segregation of network
traffic resulting from non-local file IO operations, and for the spreading of data storage so
each IO node does not have to deal with single big files. So in average each IO node will
only need to serve the IO requests of 24 computing nodes, and only store 1/8 of the
output information, which makes the output volume manageable.

4.2 Network traffic estimation within the cluster

… ...

L in k A
125M B /w rite

17 sec

L in k B
3G B (125M * 24)/w rite

40 sec

2 4 -p ort F E sw itch w /1 g iba b it u p lin k

IO n o d e

C o m p u tin g
n o d e

Figure 4: Network traffic estimation within the cluster. The traffic is dominated by the output data
flow from the compute nodes to the IO nodes. The output data will go through two network links:

Link A, from a compute node to an Ethernet switch; Link B, from the switch's gigabit port to an IO
node.

 As to be shown in Table 1 below, the total output data volume (200GB/day) produced
by the cluster is much larger than the input data volume (279MB/day), so the network
traffic is dominated by the upstream traffic from the compute nodes to the IO nodes,
where the output data are stored. The data will travel trough two network links: link A --
a compute node to a fast Ethernet switch port; link B -- the switch's gigabit port to an IO
node. Figure 4 shows the network traffic between the two network links. Following is the
worksheet for the estimation of the traffic at these two links:

Land Information System Software Design Document Version 1: 8/13/02

11

 Worst case scenario assumption: all the compute nodes are writing the output data to the
IO nodes at the same time; effective bandwidth is 60% of the Ethernet wire bandwidth.

Link A traffic:
 Data volume each compute node will produce:
 200GB/day * (1/192) ~ 1GB/day
 Frequency each compute node writes output data to an IO node:
 every 3 simulation hours.
 Total writes a compute node has:
 8 per simulation day
 Data volume each write per compute node:
 1GB/day * (1/8) = 125MB/write
 Time taken for the data to travel over link A:
 125MB*8/(100M*60%)= 17 sec

Link B traffic:
 In average, the number of compute nodes each IO node receives data from:
 24
 Total data volume each IO node receives per write:
 125MB * 24 = 3GB
 Time taken for the data to travel over link B:
 3GB*8 /(1G*60%) = 40 sec

 In summary, in the worst case scenario, it takes only 57 seconds for the 3-hour
simulation data to be transferred from the compute nodes to the IO nodes. In reality, the
data traffic will be much spread in time, and the network bandwidth will not be a
bottleneck.

5 High performance computing in LIS

Accurate initialization of the land surface moisture, carbon, and energy stores in a fully
coupled climate system is critical for meteorological and hydrological prediction.
Information about land surface processes is also of critical importance to real-world
applications such as agricultural production, water resource management, flood
prediction, water supply, etc. The development of LDAS has been motivated by the need
for a system that facilitates land surface modeling with an assimilation system to
incorporate model derived and remotely sensed data. LDAS system has been successfully
used in simulations for North America at 1/8 degree resolution in both real time and long
term (50 years) retrospective simulations. However, to truly address the land surface
initialization and climate prediction problem, LDAS needs to be implemented globally at
high resolution (1km). It can be estimated that the computational and resource
requirements increase significantly for global modeling at such high resolutions. The
proposed LIS system will aim to make use of scalable computing technologies to meet
the challenges posed by the global, high-resolution land surface modeling.

Land Information System Software Design Document Version 1: 8/13/02

12

5.1 Parallel processing in land surface modeling

Parallel computing is a powerful programming paradigm to deal with computationally
intractable problems. The notion behind parallel programs is to divide the tasks at hand
into a number of subtasks and solve them simultaneously using different processors. As a
result, a parallel system can improve the performance of the code considerably.

Land surface processes have rather weak horizontal coupling on short time and large
space scales, which enables highly efficient scaling across massively parallel
computational resources. LIS aims to take advantage of this weak horizontal coupling of
land surface processes by using a coarse-grained parallelization scheme, which does not
require communication between the compute nodes. This design fits well with the
distributed memory nature of the Linux cluster architecture.

 The parallel processing code is to break the whole processing job into properly sized
small pieces on the IO nodes, and then to distribute the pieces to the compute nodes, to
monitor the progress of the small jobs, to maintain balanced loads across the compute
nodes, and finally, to collect and assemble the finished pieces and pass the results to the
output. The parallel processing component plays a critical role to connect the land surface
modeling job to the underlying multi-processor parallel computing hardware platform, in
our case, a Linux cluster or an SGI Origin 3000, to achieve the goal of near real-time
processing of high-resolution land surface data.

5.2 Land surface modeling in LIS

The land surface modeling component is designed to perform high-performance, parallel
simulation of global, regional or local land surface processes with initially three land
surface models: the CLM model, the NOAH model and the VIC model. Specifically, the
land surface modeling component will interact with the data management components to
obtain properly formatted input forcing data, and pass the forcing data, alone with other
static parameters, to the three land surface models through the LDAS. Each of the land
surface models carries out the simulation on a distributed, parallel hardware platform,
either a Linux cluster or a SGI Origin 3000. The results are passed to the output
component, which interacts with the data management subsystem to handle the output
data. The parallelization process is managed by the system management components. The
component provides interface in accordance with ALMA and ESMF standards, wherever
applicable.

5.2.1 Structure of land surface modeling component

Figure 5 shows the software structure of the land surface modeling component. The
component is designed to be modular with well-defined interfaces that comply with
ALMA or ESMF standards. The interface between the land model driver and three land
models, CLM, NOAH and VIC, will comply with ESMF and will be general enough so
that additional land surface models can be added without much modification of the code.
The land surface modeling component is designed in a way that multiple copies can run

Land Information System Software Design Document Version 1: 8/13/02

13

as different processes in parallel, independent of each other, with each of them processing
a different piece of land surface.

LDAS

GrADS-DODS

Input data cache and
pre-processor

ALMA

ALMA-compliant
LIS output

Input data

ESMF

CLM

ESMF

NOAH

ESMF

VIC

ESMF

Output data cache and
post-processor

ALMA

ESMF interpolation and re-projection
ALMA

Interface to atmospheric
models

Figure 5: LIS land surface modeling architecture with ALMA and ESMF interfaces

5.2.2 Implementation of land surface modeling component

 The land surface modeling subsystem is designed to be running in parallel, both on a
Linux cluster with 200 nodes, and on a SGI Origin 3000 platform with 512 processors.
Although the hardware architecture differs greatly between the distributed-memory Linux
cluster and the shared-memory SGI Origin 3000, our implementation of the land surface
modeling programs will make this architectural difference fairly transparent: On the
Linux cluster, each node will run a copy of the land surface modeling process; on the SGI
Origin, each CPU will run a copy. Thus we establish a direct correspondence between a
node in the Linux cluster and a CPU in the Origin 3000, and the hardware architectural
differences will not matter to our design of the software; The land modeling scheme will
be able to run on both platforms, with minor modifications in the command line syntax.
So in this document whenever we refer to a node in the Linux cluster, it applies equally to
a CPU in the Origin 3000.

 Interoperability is achieved by following both the ALMA and ESMF standards closely.
By following the ALMA standard, the LIS land surface modeling system is guaranteed to
exchange data with other land surface modeling systems that are also ALMA-compliant.
ESMF standard will allow us to interact with other Earth system models, such as
atmospheric models or environmental models with standard interfaces.

Land Information System Software Design Document Version 1: 8/13/02

14

Set up m odel
param eters

R ead res ta rt files

In itia lize outpu t
arrays and analysis

G et base,
precip ita tion, and
radiation forcing

LSM
 sta rts

G et configuration

F in ish a ll
tiles?

App ly e leva tion
correc tion to forc ing

Transfer fo rcing in to
m odel tiles

R ead m odel specific
data: LA I, a lbebo

C all C LM /NO AH /V IC

W rite output

 W rite da ily res tarts

R eturn su rface
fie lds to a tm os m dls

N o

Yes

End tim e reached
N o

Yes

LD AS s tarts

M ode ling ends

Apply spa tia l and
tem pora l

in terpola tion

Figure 6: LIS land surface modeling flowchart.

As shown in Figure 6, and described in detail in the land surface model documentation,
land surface models proceed in a manner similar to other physical models. Modeling
proceeds given prior knowledge of the spatial and temporal domains of the simulation, in
addition to initial conditions and parameters required to solve the equations of water and
energy conservation within that domain. Modeling proceeds according to increments of
time (“time steps”, typically 15 minutes), until the ending time is reached and data is
written out for future runs and analysis.

5.3 Compute node job processing

 A compute node’s job is to run a copy of the land surface modeling subsystem in its
process space, compute a piece of land surface obtained from the IO node, and request
another piece of land surface from the IO node as soon as it finishes the current piece,
until the IO node refuses to give it any pieces, in which case there are no more land

Land Information System Software Design Document Version 1: 8/13/02

15

pieces are available and the compute node’s job is done. Figure 7 shows the flow chart of
the compute node’s job handling process.

Node k gets
land piece k

Node k computes
land piece k

Node k finishes
land piece k

Node k notifies
IO nodes and sends

data

Compute node k
starts

Node k requests
a land piece

Request
granted?

Run
finished

Yes

No

Figure 7: Compute nodes flowchart for parallel computing of land surface modeling. A compute

node does not communicate to other compute nodes.

5.4 IO node job processing

 We estimate that at 1km resolution LIS will deal with ~50,000 times more grid points
than the 2ºx2.5º resolution LDAS . To satisfy the requirements of real-time operation, the
job, which includes a grid representation of the global land surface, must be split into
smaller pieces and run in parallel. We plan to divide the global surface into 10,000 small
land pieces, and with 1km resolution, each piece would require about 5 times as many
computations as the 2ºx2.5º LDAS , and will take a single computing node about 200MB
memory to run, and 10 minutes to finish a 1-day simulation, based on the initial
performance baselining of LDAS running at both 2ºx2.5º and 0.25ºx0.25º resolutions.
The Linux cluster can consume approximately 200 pieces per round, and under ideal
conditions, it will take the whole cluster about 50 rounds to finish the whole job. This
will take 500 minutes, or about 9 hours, to finish a 1-day simulation of the whole global
land surface, which satisfies the real-time requirement with enough extra room. We
expect that the timings on the SGI Origin will be comparable to those on the cluster,
although memory and disk limitations, some imposed by the queue structure, will likely
prohibit effective use of that system for demonstrating LIS in a near-real-time mode.
However, we plan to demonstrate the LIS on the SGI Origin system as proof-of-concept.

Land Information System Software Design Document Version 1: 8/13/02

16

Job starts

Divide globe into N
land pieces, put in

unfinished pool

Grant node k land
piece n

Any node
requests?

Start timer k

No

No

No

Yes, timer k
expired

Yes, node k requested

Yes, node k
reported

Any land
pieces left?

Run
finished

No

Any node reports
finished job?

Any timer
expired?

Reset timer k
remove land piece n

from the pool

Assume node k
crashed, return

piece n to the pool

Yes

Keep track of the
3 pools

n n

n n

n n

Unfinished Fetched Finished

Unfinished Fetched Finished

Unfinished Fetched Finished

Unfinished Fetched Finished

Unfinished Fetched Finished

Figure 8: Parallel computing control flowchart (left) and parallelization scheme (right) of a master

node.

 We propose to use a modified version of the “pool of tasks” scheme for the parallel
processing of the land pieces. A pool of tasks paradigm is equivalent to a master – slave
programming notion, where a single processor will act as a master node and distribute
jobs to the slave (compute) nodes. In the LIS “pool of tasks” design, one of the IO nodes
will act as a master node and another IO node will be designated as a backup to it.
The master node will keep three tables on hand when starting the job: table of unfinished-
jobs, finished-jobs, and jobs-fetched. At the beginning, the 10,000 land pieces are listed
in the "unfinished" table, and each compute node comes to the master to fetch a piece
from it, and starts working on it. The master node then moves the fetched jobs to the
"jobs-fetched" table, and starts a timer for each fetched job. The timer specification will
be based on the existing knowledge of a single execution of a land surface model. When
a compute node finishes a job and notifies the master node before the job’s corresponding
timer runs out, this piece is regarded a finished job, and the master node moves it from
the "fetched" table to the "finished" table. And the compute node goes on to fetch another
job until the "unfinished" table is empty. If a fetched job's timer runs out before the
compute node reports back, the master node then assumes that that particular compute

Land Information System Software Design Document Version 1: 8/13/02

17

node must have crashed, and then moves that timed-out job from the "fetched" table back
to the "unfinished" table for other compute nodes to fetch. Figure 7 shows the flowchart
(left) of the master node’s job handling and scheduling process, and the various status of
the three tables (right) the master node uses to keep track of the job progress at different
corresponding stages in the flowchart.

To maximize throughput of the system in a parallel environment, load balancing is
required to keep the compute nodes busy by efficiently distributing the workload. The
use of a "pool of tasks" is effective in achieving automatic load balancing by minimizing
the idle times of compute nodes, since the nodes that finish their computations will
request more tasks than the ones that require more time for their computations. This
automatic, asynchronous scheduling help in keeping the compute nodes busy without
having to wait for other node's computations.

As shown in Figure 8, as the land surface modeling process starts, the master node
divides the globe into a number of smaller pieces. The inputs required by the land surface
models, namely, initial conditions, boundary conditions, and parameters will be provided
to the compute nodes before the land surface model run begins. The modeling process
can be a fresh initialization (cold start) or a restart from a previously finished run. This
process also requires preprocessing of the data such as time/space interpolation. The
output from each compute node, after the computation, will be reassembled at the IO
nodes.

6 Data Management in LIS

The data management subsystem in LIS is composed of the following functions: input
data retrieval from the Internet, data pre-processing and post-processing, data
interpolation and sub-setting, output data aggregation, storage, backup and retrieval. It
links the other subsystem together, and ensures smooth end-to-end data flow, from the
input raw data all the way to the output data satisfying LIS users’ various requests. The
following sections describe the data flow and volume used in LIS operation, the use of
GrADS-DODS server for data management, visualization, etc., and other functions such
as data retrieval.

6.1 Data flow and volume in LIS

 Figure 9 shows the global logical data flow of LIS system on the LIS cluster platform.
On SGI Origin platform, the IO nodes in Figure 3 will be replaced by local disks for the
IO functions, and the compute nodes are replaced with the same number of CPUs. Input
data will be pre-staged on SGI instead of using GrADS-DODS servers.

 LIS will deal with three categories of global data: parameter data, input forcing data
and output data. At the top level of the system design, the global data are represented by
data files of various formats.

Land Information System Software Design Document Version 1: 8/13/02

18

GrADS-
DODS
Server

GrADS-
DODS
Server

GrADS-
DODS
Server

GrADS-
DODS
Server

Computing Node

Static Data
(UMD/Soil/Mask)

Computing Node

Static Data
(UMD/Soil/Mask)

Computing Node

Static Data
(UMD/Soil/Mask)

Computing Node

Static Data
(UMD/Soil/Mask)

Computing Node

Static Data
(UMD/Soil/Mask)

Computing Node

Static Data
(UMD/Soil/Mask)

Computing Node

Static Data
(UMD/Soil/Mask)

Computing Node

Static Data
(UMD/Soil/Mask)

Computing Node

Static Data
(UMD/Soil/Mask)

Computing Node

Static Data
(UMD/Soil/Mask)

Computing Node

Static Data
(UMD/Soil/Mask)

Computing Node

Static Data
(UMD/Soil/Mask)

Forcing Data
(GDAS/GEOS/AGRMET/NRL)

GrADS-
DODS
Server

Data
Pre-processor

Data
Retriever

Internet Users

 Forcing data

 Output data

Parameter data

IO Node

IO Node

IO Node

IO Node

IO Node

IO Node

IO Node

IO Node

IO Node

IO Node

Figure 9: LIS global logical data flow on LIS Linux cluster. Physically, the IO nodes for input data
and output data on the two sides of the cluster are the same IO node computers. On SGI, the flow is

similar, except the IO nodes will be replaced by local hard disks, and the compute nodes will be
replaced by CPUs. GrADS-DODS servers will not be used on SGI. Instead, the data will be pre-

staged.

 The parameter data include the vegetation classification, land mask, etc., with a size of
about 136 GB. Since these data will not be updated frequently, we will put a copy of
these data on each compute node's local disk to reduce network traffic. Currently the bulk
of the data are saved as ASCII data, and we will convert the data into binary format to
allow all the static data to fit on the node's 80 GB disk.

 The forcing data, fetched from various locations on the Internet, need to be fed to the
compute nodes at regular intervals. The total traffic is estimated to be 279 MB/day, which
is not significant compared to the output data traffic. We designate one of the IO nodes to
fetch and pre-process the data, then send a copy of the forcing data to the other IO nodes
via NFS system. When a compute node needs the forcing data, it will contact the IO
node, which corresponds to the sub-cluster it belongs to without bothering other IO
nodes. To further reduce the IO network traffic, each IO node will run the GrADS-DODS
server to feed the compute nodes with the sub-set of the data they need.

 The output data will be stored on the IO nodes too, and served to users via a GrADS-
DODS server running on one of the IO nodes. Since it is not feasible to store the output
in a single file (200 GB/day), we want to distribute the data across all the IO nodes. To
keep the huge output data volume manageable, we designed a storage scheme that will

Land Information System Software Design Document Version 1: 8/13/02

19

distribute the land surface variables in the output data across the IO nodes. Since there are
40-48 variables in the output data, with some of them having multiple levels, we can let
each IO node to store the global data of only 6 or so of the output variables. So on
average, the I/O traffic is segregated and each IO node is only taking 1/8 of the total data
traffic, and the subsequent operations by the GrADS-DODS servers are greatly
simplified.

Table 1 lists all the global data files and specifications. As described in Section 2, these
files specify the parameters, initial and boundary conditions required for the land surface
model runs. For e.g, the forcing data translates to variables such as total precipitation,
convective precipitation, downward shortwave and longwave radiation, near surface air
temperature, near surface specific humidity, near surface U, V, winds and surface
pressure. In addition to these files, the user also specifies parameters such as the spatial
and temporal resolution, the land surface model, etc. LDAS also allows the user to
initialize state variables, either by specifying a global uniform value or taken from a
restart file produced by a prior run. Please refer to the LDAS source code documentation
(http://lis.gsfc.nasa.gov/docs/LDAS-Doc/ldas2/) for a detailed description of the
input/output routines corresponding to each file. The output from the land models
translates to variables such as soil moisture, surface runoffs, canopy transpiration, etc. A
list of the LDAS variables passed between the modules, following the ALMA
convention, is presented in Appendix A.

Table 1: LIS global data files

LIS data files and estimated data volume for LIS with 1km x 1km resolution, based on the data used for
LDAS ¼ x ¼

Dataset Information Desired
Resolution

Native
format

Apprx.
Size

Update
frequen
cy

UMD
Vegetation
classification
map

This file lists the frequency with which of each of the 14
vegetation types occurs in each of the ¼ degree LDAS
grid boxes. See
http://ldas.gsfc.nasa.gov/GLDAS/VEG/GLDASveg.shtml
for a detailed description.

1km x 1km ASCII 65G Static

UMD Land
mask

This ascii file contains the LDAS unified land/sea mask.
See
http://ldas.gsfc.nasa.gov/GLDAS/VEG/GLDASveg.shtml
for a detailed description

1km x 1km ASCII 18G Static

Soil
classification
map

1km x 1km Binary 20G Static

Soil color
map 1km x 1km Binary 2G Static

Sand
fraction file 1km x 1km Binary 6G Static

Clay fraction
map

The soil parameter maps used in LDAS were derived
from the global soils dataset of Reynolds et al. (1999).
That dataset includes the percentages of sand, silt, and
clay, among other fields, and is based on the United
Nations Food and Agriculture Organization (FAO) Soil
Map of the World linked to a global database of over
1300 soil pedons. The LDAS soil color map was
interpolated from a 2 x 2.5 degree global map produced
by NCAR 1km x 1km Binary 6G Static

Leaf Area
Index (LAI)

This was generated using three information sources: (1)
an 8km resolution time series of LAI, which was derived
by scientists at Boston University (Myneni et al. 1997)
from AVHRR measurements of normalized difference

1km x 1km Binary 1M Static

http://lis.gsfc.nasa.gov/LDAS-Doc/ldas2/
http://ldas.gsfc.nasa.gov/GLDAS/VEG/GLDASveg.shtml
http://ldas.gsfc.nasa.gov/GLDAS/VEG/GLDASveg.shtml

Land Information System Software Design Document Version 1: 8/13/02

20

AVHRR –
derived LAI
climatology

vegetation index (NDVI) and other satellite observations.
(2) A climatology based on the 8km time series and (3)
the 1km UMD vegetation type classification. 1km x 1km Binary 5G Static

Static file size 125G

GEOS
forcing data

Obtained from GSFC’s Goddard Earth Observing System
Data Assimilation System (GEOS) (Pfaendtner et al.
1995) version 4.3 that supports level-4 product
generation for the NASA Terra satellite (Atlas and
Lucchesi 2000).

1 deg Binary 25M/d
ay

Every 3
hours

GDAS
forcing data

The Global Data Assimilation System (GDAS) is the
global, operational weather forecast model of NCEP
(Derber et al 1991). LDAS makes use of GDAS 0, 0.3,
and, as needed, 6 (hour) forecasts, which are produced at
6 hour intervals

Native T170
~0.7 deg GRIB 50M/d

ay
Every 6
hours

AGRMET
SW flux data

Binary 48M/d
ay

Every 1
hour

AGRMET
LW flux
data

LDAS estimates global, downward shortwave and
longwave radiation fluxes using a procedure from the Air
Force Weather Agency’s (AFWA) Agricultural
Meteorology modeling system (AGRMET). It utilizes
the AFWA Real Time Nephanalysis (RTNEPH) 3-hourly
cloud maps (Hamill et al. 1992), and the AFWA daily
snow depth (SNODEP) maps (Kopp and Kiess 1996) to
calculate surface downwelling shortwave radiation using
the algorithms of Shapiro (1987)

~ 48 km

Binary 144M/
day

Every 1
hour

NRL
precipitation
data

Near-real time satellite-derived precipitation data is
obtained from the U. S. Naval Research Laboratory
(NRL). NRL produces precipitation fields based on both
geostationary satellite infrared (IR) cloud top temperature
measurements and microwave observation techniques
(Turk et al. 2000)

¼ degree Binary 12M/d
ay

Every 6
hours

Total data input flux 279M/day
Estimated output volume for LIS (1/100 x 1/100) Resolution, based on GLDAS runs with 2x2.5 resolution.

Data output interval is assumed to be the same
CLM output
data Output from LDAS runs 1km x 1km GRIB 200G/

day
Every
15 min

Total data output flux 200G/day

6.2 GrADS-DODS server structure

 GrADS-DODS servers will be employed both to serve the input data to the land
surface computing code, and to serve the output to the Internet users. Figure 10 shows the
architecture of the GrADS-DODS server. A GrADS-DODS server uses a typical client-
server architecture to communicate with the DODS clients. The communication protocol
between a client and a server is HTTP. A GrADS-DODS server has the following
components: Java servlets contained in the Tomcat servlet container, to handle the client
requests and server replies via HTTP protocol; DODS server APIs, to parse the DODS
requests and package output data; interface code, to translate the DODS requests into
GrADS calls; and finally, GrADS running in batch mode, to actually process the requests,
and perform data-retrieving, sub-setting and processing on the server side.

Land Information System Software Design Document Version 1: 8/13/02

21

G rA D S
b a tc h m o d e

D a ta s e ts in G rA D S -
s u p p o r te d fo rm a t: b in a ry ,
G R IB , N e tC D F , H D F , e tc .

In te r fa c e
c o d e

D O D S
s e rv e r A P I

J a v a s e rv le t

T o m c a t

G
rA

D
S-

D
O

D
S

se
rv

er

D O D S c lie n t

C lie n t re q u e s ts S e rv e r re s p o n s e d a ta

Figure 10: GrADS-DODS server architecture.

6.3 Description for data retrieving component

 The data retrieving component locates and downloads various atmospheric forcing
data sets, as specified in Table 1, at regular intervals, from the Internet to LIS’s local
disks. The data retrieving component will also perform some basic pre-processing on the
forcing data.

6.3.1 Implementation
 The data retrieving component is implemented as a multi-process structure, with each
process dealing with a specific data set, so in case a data set takes unusually long time, it
will not block the other processes’ progress. Following is the pseudo-code of the data
retrieving component:

Define data sources:

DS[1]: URL1
DS[2]: URL2
…
DS[n]: URLn

End Define data sources

For I=1, n Do
Start process(I) (non-blocking start)

End For

Define Process (I)
Fetch data from DS[I];
Pre-process DS[I];
Return;

End Define Process (I)

Land Information System Software Design Document Version 1: 8/13/02

22

7 Description for system monitoring component

The system monitoring component is responsible for monitoring, maintaining and
administering the LIS system on the Linux cluster to ensure its reliable operation and
optimal performance output.

We categorize the system management function into four levels: hardware level,
interconnect level, operating system level and application software level. For the SGI
Origin 3000 platform, we are not involved in the management of the hardware and
interconnect levels. But for the Linux cluster, the hardware and interconnect level
management is our responsibility and is critical to the overall stability and performance
of the LIS system.

The hardware level system management involves power-up and shutdown of the nodes,
booting strategy and hardware status monitoring. Interconnect level management requires
the monitoring of the link status of the network nodes, bandwidth usage and traffic
statistics. Operating system level management takes care of system resource usages, such
as CPU, memory and disk space usage. Application level management oversees the
progress of the LIS jobs, configures different runs, analyze performance bottlenecks, and
obtain performance profiles for fine-tuning. Dynamic error and diagnostic logs will be
maintained for LDAS and the land surface models during the operation of LIS. The
diagnostic logs will be available to the end users.

7.1 Hardware monitoring data

The following table summarizes the system data of various levels the management
subsystem is designed to collect and analyze.

Land Information System Software Design Document Version 1: 8/13/02

23

Table 2: Hardware monitoring and management data collection

Category Data Items Update frequency
Overall cpu/mem of each process 1min
Overall progress of whole job 2min
Progress of each process 1min
Timing of each module sampled, off-line
Memory usage of each module sampled, off-line
Total memory usage & biggest user 2min
Total CPU usage & biggest user 2min
Total disk space usage 2min
System up-time and running procs 2min
Bandwidth usage of each node 2min
Bandwidth usage of switches 2min
Latency measurements 2min
Packet drops measurements 2min
Fan speeds 10min
Chasis temperature 10min
Power supplies voltage 10min

LIS Cluster System Monitoring and Management Data

Operating system level

Interconnect level

Hardware level

Application level

7.2 Architecture and implementation

The variety of system variables and management duties requires us to design a
management system with modules performing individual and well-defined tasks. Figure
11 shows the structured design of the system management functionalities for the Linux
cluster platform. We will not implement such a system on SGI because the SGI platform
is not under our management control.

On the hardware level, we will design scripts to take advantage of the “Wake-on-Lan”
technology for powering up the nodes smoothly in a well-defined pattern. The nodes will
be able to boot across the network with the PXE technology, as well as from the local
disk, to centralize system software management. After booting, each node’s hardware
parameters, such as CPU temperature, cooling fan speeds and power supply voltages, will
be collected by kernel modules called “lm-sensors”, and sent to the central management
station with web-based display with automatic updates.

On the interconnect level, we will use SNMP protocol as the underlying data collection
and management mechanism, interfaced with MRTG for web-based display of network
statistics. Additional network data can also be collected by Big Brother system and
network monitor, also with web output.

On the operating system level, we will use SNMP and various OS shell commands and
utilities to collect system data, and use MRTG and Big Brother as the interface.

Land Information System Software Design Document Version 1: 8/13/02

24

On the application level, we will develop CGI scripts, interfaced with OS commands and
utilities, to provide a web-interface for the monitoring and control of LIS jobs and
processes. Standard performance profiling and debugging tools will be used off-line to
analyze sample runs for trouble-shooting and performance fine-tuning.

OS resource
management

Interconnect
management

Hardware
management

Application
management

Monitoring and
management stations

Wake-on-Lan

LM78/80

SNMP

OS commands

Profiling tools

LIS hardware/software
system

OS commands

SNMP

PXE

Figure 11: LIS system monitoring and management architecture for the LIS Linux cluster. This

system will not be implemented on SGI since it is not under our control.

8 User interface design

The user interface in LIS is an important component of LIS that will allow the interactive,
flexible, use of the LIS hardware and software to users. The LIS user interface is intended
to be web-based, and designed to allow for cascading complexity depending on the level
of user’s need to control the system. The following sections present various facets of the
user interface design of LIS.

8.1 User interface components

The user interface subsystem takes a typical multi-tier client-server system architecture.
On the client side, a user has three types of client programs to use as the front-end: a web
browser, a ftp client program (which can be integrated in a web browser), or a DODS
client program. On the server side, a general purpose web server will be used to serve
clients with a web browser, and a GrADS-DODS server will be deployed to serve DODS
clients, and a FTP server to server ftp clients. Besides theses components, CGI scripts
and CGI-GrADS gateway scripts will be used as the middleware to perform dynamic
processing based on users’ interactive requests sent through web browsers. Figure 12
shows the user interface architecture design.

Land Information System Software Design Document Version 1: 8/13/02

25

GrADS-
DODS
Server

Web
Server

FTP
Server

Web
Browser

Web
Browser

DODS
Client

FTP
Client

CGI-
GrADS

Gateway

INTERNET

LIS

Non-interactive
content

Static web text
Static images

Data index

Interactive content
Dynamic images
User defined data

tables
Get data via DODS

protocol Original data

Web
Browser

CGI
Web

Server

Job
Scheduler

Web-based
Job submission

The Cluster

Figure 12: LIS user interface architecture.

8.2 Sample prototype interface

Figure 13 shows representative examples of the web-base interface objects to be
implemented in the user interface. Text boxes ask for a user’s free input, which are
mostly used in the user authentication process. Check boxes prompt a user to make one or
more choices (Radio buttons ask for one choice). Drop-down menus limit a user’s options
to predefined ones, which are suitable for model parameter input. Check boxes and text
boxes can be combined to provide a user with selectable search criteria, for example.
Finally, graphics are either pre-produced or produced as results of a user’s data query or
data analysis. Figure 14 is a screenshot of the LIS entry page.

Land Information System Software Design Document Version 1: 8/13/02

26

Figure 13: Sample of web-based user interface objects.

Land Information System Software Design Document Version 1: 8/13/02

27

Figure 14: Screenshot of LIS web entry page.

8.3 User levels and security design
 Outside users accessing the LIS are categorized into three levels, associated with
different levels of data access and security requirements.

 Level 1 users are the general public, who will access the LIS data primarily through a
standard web browser. Information provided to this class includes static images and text,
and some limited interactive content such as GIF/JPG/PNG images generated on the fly
in response to users' regulated web input. The static content, most of which is static html
pages, is served via the web server, while the interactive content is generated via a three-
tier architecture with server-side GrADS as the image engine and below it the GrADS-
DODS server as the data engine to feed the server-side GrADS. This group of users does
not have direct access to the data or LIS scientific computing power system, and their
usage of system resources is very limited. Therefore, for this class of users we do not
enforce any additional authentication or authorization procedures. It is also our intention
to facilitate easy access to the data for education and outreach purposes.

Level 2 users have direct access to LIS data, either through our GrADS-DODS server by
using a DODS client, or directly through ftp fetches. The GrADS-DODS server provides
the users with the ability and flexibility to get only a sub-set of the data they need. To be
authorized as Level 2 users, they will have to register with us first by filling out web
forms, and they will be authenticated using password and source IP addresses before
accessing the data. The GrADS-DODS server will impose a limit on system resource
usages. The GrADS-DODS server allows the system administrator to limit the system
usage by configuring the following parameters for each authorized IP address:

Land Information System Software Design Document Version 1: 8/13/02

28

Table 3: Configurable GrADS-DODS parameters for access to level 2 users of LIS

Parameter Description
Subset limit Sets the maximum size in megabytes of a

subset
Generate limit Sets the maximum size in kilobytes of a

generated dataset
Upload limit Sets the maximum size in kilobytes of an

uploaded dataset
Time limit Sets the maximum time in milliseconds

that a dataset generation task is allowed
Hit limit Sets the maximum number of hits per hour

permitted from a specific IP
Abuse limit Sets that length of time in hours an IP

address will be blocked out after exceeding
the hit limit

Deny datasets A comma delimited list of datasets that
should not be accessible

Allow datasets A comma delimited list of datasets that
should be accessible

Level 3 users can configure LIS model runs to their taste using the web interface. The
configuration parameters they enter in the web form will be converted to LIS
configuration files to control model runs. All the parameters will have default values.

The configuration parameters needed for a LIS model run fall into either temporal
domain, spatial domain, model physics, model forcing, or output. The temporal domain
parameters are the start and end time. The spatial domain parameters needed are the area
over which the model will be run (local, regional, global, or user defined in
latitude/longitude), and spatial resolution (1 degree, 1/4 degree, or 1 km). The model
physics parameters needed are the Land Surface Model, the evaporation scheme, the
snowmelt scheme, the leaf index scheme, subgrid tiling on/off, runoff routing on/off and
dynamic vegetation on/off. The model forcing configuration parameters needed are the
precipitation input file source, the radiation input file source, the wind speed input file
source, the humidity input file source, the temperature input file source, the vegetation
input file source, the soil input file source, and the topography input file source. The
output configuration parameters define the output data format and resolution.

A representative sample listing of the required parameters of the LIS model run is
included in Appendix B.

Land Information System Software Design Document Version 1: 8/13/02

29

References

ALMA: http://www.lmd.jussieu.fr/ALMA/

Atlas, R. M., and R. Lucchesi, File Specification for GEOS-DAS Gridded Output.

Available online at : http://dao.gsfc.nasa.gov/DAO_docs/File_Spec_v4.3.html , 2000.

Chen, F., K. Mitchell, J. Schaake, Y. Xue, H. Pan, V. Koren, Y. Duan, M. Ek, and A.

Betts, “Modeling of land-surface evaporation by four schemes and comparison with FIFE

observations”, J. Geophys. Res., 101, D3, 7251-7268, 1996.

CLM: http://www.cgd.ucar.edu/tss/clm/

Collatz G. J., C. Grivet, J. T. Ball, and J. A. Berry, J. A. “Physiological and

Environmental Regulation of Stomatal Conductance: Photosynthesis and Transpiration:

A Model that includes a Laminar Boundary Layer”, Agric. For. Meteorol. , 5, pp 107 --

136, 1991.

Derber, J. C., D. F. Parrish, and S. J. Lord, “The new global operational analysis system

at the National Meteorological Center”, Wea. And Forecasting, 6, pp 538-547, 1991.

ESMF: http://www.esmf.ucar.edu/

GrADS-DODS server: http://grads.iges.org/grads/gds/

Hamill, T. M., R. P. d’Entremont, and J. T. Bunting, “A description of the Air Force real-

time nephanalysis model”, Wea. Forecasting, 7, pp 238-306, 1992.

Hofstee, H. P., J. J. Likkien, and J. L. A. Van De Snepscheut "A Distributed Implementation of a

Task Pool". Research Directions in High-Level Parallel Programming Languages, pp 338--348,

1991.

Jarvis, P. G., “ The interpretation of leaf water potential and stomatal conductance found

in canopies in the field”, Phil. Trans. R. Soc. London, Ser. B, 273, pp 593 – 610, 1976.

Kopp, T. J. and R. B. Kiess, “The Air Force Global Weather Central cloud analysis

model”, AMS 15th Conf. on Weather Analysis and Forecasting, Norfolk, VA, pp 220-222,

1996.

LDAS: http://ldas.gsfc.nasa.gov/

NOAH: http://www.emc.ncep.noaa.gov/mmb/gcp/noahlsm/README_2.2.htm

Pfaendtner, J., S. Bloom, D. Lamich, M. Seablom, M. Sienkiewicz, J. Stobbie, and A. da

Silva, “Documentation of the Goddard Earth Observing System (GEOS) Data

http://www.lmd.jussieu.fr/ALMA/
http://dao.gsfc.nasa.gov/DAO_docs/File_Spec_v4.3.html
http://www.cgd.ucar.edu/tss/clm/
http://www.esmf.ucar.edu/
http://grads.iges.org/grads/gds/
http://ldas.gsfc.nasa.gov/
http://www.emc.ncep.noaa.gov/mmb/gcp/noahlsm/README_2.2.htm

Land Information System Software Design Document Version 1: 8/13/02

30

Assimilation System – Version 1”, NASA Technical Memorandum 104606, 4, pp 44,

1995.

Reynolds, C. A., T. J. Jackson, and W. J. Rawls, “Estimating available water content by

linking the FAO Soil Map of the World with global soil profile databases and pedo-

transfer functions” American Geophysical Union, Fall Meeting, Eos Trans. AGU, 80,

1999.

Richards, L. A., “Capillary conduction of liquids in porous media”, Physics, 1, pp 318—333,

1931.

Rogers, E., T. L. Black, D. G. Deaven, G. J. DiMego, Q. Zhao, M. Baldwin, N. W. Junker, and Y.

Lin, “Changes to the operational "early" eta analysis / forecast system at the National Centers for

Environmental Prediction” Wea. Forecasting, 11, pp 391-413, 1996.

Shapiro, R. “A simple model for the calculation of the flux of direct and diffuse solar radiation

through the atmosphere”, AFGL-TR-87-0200, Air Force Geophysics Lab, Hanscom AFB, MA.

Turk, F. J., G. Rohaly, J. D. Hawkins, E. A. Smith, A. Grose, F. S. Marzano, A. Mugnai, and V.

Levizzani, “Analysis and assimilation of rainfall from blended SSM/I, TRMM, and geostationary

satellite data”, AMS 10th Conf. On Sat. Meteor. and Ocean., Long Beach, CA, 9-14 January, pp

66-69, 2000.

VIC: http://www.hydro.washington.edu/Lettenmaier/Models/VIC/VIChome.html

http://www.hydro.washington.edu/Lettenmaier/Models/VIC/VIChome.html

Land Information System Software Design Document Version 1: 8/13/02

31

Appendix A

List of LDAS variables passed between the modules (Following
ALMA Convention)

nswrs Net Surface Shortwave Radiation (W/m2)
nlwrs Net Surface Longwave Radiation (W/m2)
lhtfl Latent Heat Flux (W/m2)
shtfl Sensible Heat Flux (W/m2)
gflux Ground Heat Flux (W/m2)
snohf Snow Phase Change Heat Flux (W/m2)
dswrf Downward Surface Shortwave Radiation (W/m2)
dlwrf Downward Surface Longwave Radiation (W/m2)
asnow Snowfall (kg/m2)
arain Rainfall (kg/m2)
evp Total Evaporation (kg/m2)
ssrun Surface Runoff (kg/m2)
bgrun Subsurface Runoff (kg/m2)
snom Snowmelt (kg/m2)
snowt Snow Temperature (K)
vegt Canopy Temperature (K)
baret Bare Soil Surface Temperature (K)
avsft Average Surface Temperature (K)
radt Effective Radiative Surface Temperature (K)
albdo Surface Albedo, All Wavelengths (%)
weasd Snowpack Water Equivalent (kg/m2)
cwat Plant Canopy Surface Water Storage (kg/m2)
soilmc Total Column Soil Moisture (kg/m2)
soilmr Root Zone Soil Moisture (kg/m2)
soilmt1 Top 1-meter Soil Moisture (kg/m2)
mstavc Total Soil Column Wetness (%)
mstavr Root Zone Wetness (%)
evcw Canopy Surface Water Evaporation (W/m2)
trans Canopy Transpiration (W/m2)
evbs Bare Soil Evaporation (W/m2)
sbsno Snow Evaporation (W/m2)
pevpr Potential Evaporation (W/m2)
acond Aerodynamic Conductance (m/s)
lai Leaf Area Index
snod Snow Depth (m)
snoc Snow Cover (%)
salbd Snow Albedo (%)
tmp2m Two Meter Temperature (K)
humid Two Meter Humidity (kg/kg)
uwind Ten Meter U Wind (m/s)
vwind Ten Meter V Wind (m/s)
sfcprs Surface Pressure (mb)
soilt Soil Temperature (K)
soilm Soil Moisture (kg/m2)
lsoil Liquid Soil Moisture (kg/m2)

Land Information System Software Design Document Version 1: 8/13/02

32

Appendix B

Sample input card file for the execution of LIS model run

!===> Fundamental parameters necessary for running LDAS
&driver
LDAS%DOMAIN = 1 ! Model domain (1=NLDAS,2=GLDAS1/4,3=GLDAS2x2_5)
LDAS%LSM = 1 ! Land surface model (2=CLM,4=NOAH)
LDAS%FORCE = 3 ! Forcing data type (1=GDAS,2=GEOS,3=ETA,4=NCEP,5=NASA)
LDAS%SOIL = 1 ! Soil parameter scheme (1=orig veg-based, 2=Reynolds 0-3.5m, 3=NLDAS
Reynolds 0-2m, 4=NLDAS Yun 0-2m)
LDAS%LAI = 1 ! Leaf area index scheme (1=original LAI settings, 2=AVHRR dervied)
/

!===> STANDARD PARAMETERS
!===> Parameters necessary for all domains, land surface models, and forcing related to input
specifications
&ldas_run_inputs
LDAS%EXPCODE = 999 ! Three Digit experiment code
LDAS%NT = 13 ! Number of Vegetation Types
LDAS%NF = 10 ! Number of forcing variables
LDAS%NMIF = 15 ! Number of forcing variables for model init. option
LDAS%WFOR = 0 ! Write Forcing (0=no, 1=yes)
LDAS%WTIL = 0 ! Write tile space data (0=no, 1=yes
LDAS%WHDF = 1 ! Write HDF output files (0=no,1=yes)
LDAS%WGRB = 0 ! Write Grib output files (0=no,1=yes)
LDAS%WBIN = 0 ! Write Binary output files (0=no,1=yes)
LDAS%STARTCODE = 3 ! **** MOS_IC,CLM_IC,CAT_IC MUST be set to the same value
as STARTCODE ****
! 1=restart file,2=realtime,3=defined,4=model init
LDAS%SSS = 0 ! Starting Second
LDAS%SMN = 00 ! Starting Minute
LDAS%SHR = 04 ! Starting Hour
LDAS%SDA = 10 ! Starting Day
LDAS%SMO = 06 ! Starting Month
LDAS%SYR = 2001 ! Starting Year
LDAS%ENDCODE = 1 ! 0=realtime, 1=specific date
LDAS%ESS = 0 ! Ending Second
LDAS%EMN = 00 ! Ending Minute
LDAS%EHR = 05 ! Ending Hour
LDAS%EDA = 10 ! Ending Day
LDAS%EMO = 06 ! Ending Month
LDAS%EYR = 2001 ! Ending Year
LDAS%TS = 3600 ! Timestep (seconds), SHOULD NOT BE > 3600
LDAS%UDEF = -9999. ! Undefined value
LDAS%WRITEINTF = 3. ! Forcing Output Interval (hours)
LDAS%ODIR = "OUTPUT" ! Output Data Base Directory
LDAS%DFILE = "ldasdiag.dat" ! Runtime Diagnostics File (placed in ODIR/EXP)
LDAS%FFILE = "fsource.dat" ! Runtime Forcing Status (placed in ODIR/EXP)
LDAS%EVTFILE = "ETAValidTime" ! Runtime Diag. of ETA files and Valid time

Land Information System Software Design Document Version 1: 8/13/02

33

!===> Elevation Adjustment: 1=Adjust Forcing Data 0=Don't Adjust (NCEP data is already
adjusted) !
LDAS%TEMPADJ = 1 ! Adjust temperature data
LDAS%PRESADJ = 1 ! Adjust pressure data
LDAS%HUMIDADJ = 1 ! Adjust humidity data
LDAS%LWRADADJ = 1 ! Adjust long wave radiation data
LDAS%VCLASS = 1 ! Vegetation Classification (1=UMD)
LDAS%RPSAS = 0 ! Run PSAS for temperature assimilation
LDAS%RBIAS = 0 ! Run bias correction with assimilation
LDAS%RIBC = 0 ! Run incremental bias correction
LDAS%RDBC = 0 ! Run diurnal bias correction
LDAS%RSDBC = 0 ! Run semi-diurnal bias correction
LDAS%AVHRR = "/YUKON/AVHRR_LAI" ! AVHRR Data directory
LDAS%ATIME = 0.0 ! AVHRR Time flag
/

!===> DOMAIN PARAMETER NAMELISTS
!===> Parameters that are required for running GLDAS
&gldas
LDAS%NC = 1440 ! Number of Columns in Grid
LDAS%NR = 600 ! Number of Rows in Grid
LDAS%MAXT = 1 ! Maximum tiles per grid
LDAS%MINA = 0.05 ! Min grid area for tile (%)
LDAS%VFILE = "GVEG/UMD_60G0.25.txt" ! Vegetation Classification Map File
LDAS%MFILE = "GVEG/UMD60mask0.25.asc" ! Land/Water Map File FOR
MODELLING
LDAS%FMFILE = "GVEG/UMD60mask0.25.asc" ! *Land/Water Map File for
FORCING DATA
LDAS%SFILE = "BCS/sim60soil0.25.txt" ! *Soil classification Map File
LDAS%SAFILE = "BCS/sand60.25.bfsa" ! Sand fraction map file
LDAS%CLFILE = "BCS/clay60.25.bfsa" ! Clay fraction map file
LDAS%ISCFILE = "BCS/soicol60_2x2.5i.bin" ! Soil color map file (for CLM)
LDAS%GPCP = 0 ! Global observed precipitation flag (0=Don't
Use, 1=Use)
LDAS%NRLTIME = 0 ! NRL precip times
LDAS%NRLDIR = "/GLDAS1/NRL/6-hour" ! NRL precip directory
LDAS%AGRMDIR = "/GLDAS5/DATA/AGRMET" ! AGRMET Forcing Base Directory
LDAS%AGRMETSW = 0 ! AGRMET SW Observed Radiation
(0=Don't Use, 1=Use)
LDAS%AGRMETLW = 0 ! AGRMET LW Observed Radiation
(0=Don't Use, 1=Use)
LDAS%KVFILE = "GVEG/tile_info.1440x600" ! Koster tilespace file 1/4 (not
functioning)
LDAS%KOSTER = 0 ! Flag to use Koster tilespace (0=no,1=yes)
LDAS%NKTYPE = 9 ! Number of Koster vegetation types
/
!===> LAND SURFACE MODEL PARAMETER NAMELISTS
!===> Parameters that are required for using CLM
&clm
LDAS%RCLM = 1 ! Run CLM (0=no,1=yes)
LDAS%WRITEINTC = 3. ! CLM Output Interval (hours)
LDAS%CLM_RFILE = "BCS/clm.rst" ! CLM active restart file

Land Information System Software Design Document Version 1: 8/13/02

34

LDAS%CLM_VFILE = "BCS/drv_vegm.dat" ! CLM Vegetation Tile Specification
File
LDAS%CLM_MVFILE = "BCS/drv_vegp.dat" ! CLM Vegetation Type Parameter
File
LDAS%CLM_SFILE = "BCS/real.soilparms.txt" ! CLM Soil Parameter File
LDAS%CLM_CFILE = "BCS/drv_clmin.dat" ! CLM Constant Parameter File
LDAS%CLM_OFILE = "BCS/clm_out.dat" ! CLM Output File
LDAS%CLM_PFILE = "BCS/CLM_POUT.DAT" ! CLM 1D Parameter Output
File
LDAS%CLM_ISM = 0.45 ! CLM Initial Soil Moisture (m3/m3)
LDAS%CLM_IT = 290.0 ! CLM Initial Temperature (K)
LDAS%CLM_IC = 3 ! CLM Initial Condition Source
LDAS%CLM_ISCV = 0. ! CLM Initial Snow Mass (kg/m2)
LDAS%CLM_SMDA = 0 ! CLM SM Assimilation Option
LDAS%CLM_TDA = 0 ! CLM Temperature Assimilation Option
LDAS%CLM_SDA = 0 ! CLM Snow Assimilation Option
/
!===> FORCING PARAMETER NAMELISTS
!===> Parameters that are required when using GEOS forcing
&geos
LDAS%FGEOS = 1 ! Use GEOS 3hr Forcing (no=0,yes=1)
LDAS%GEOSDIR = "/GLDAS4/DATA/GEOS/BEST_LK" ! GEOS3 Forcing Base
Directory
LDAS%ELEVFILE = "BCS/eldif_geos60.25i.bin" ! LDAS-GEOS Elevation Difference
File
LDAS%GEOSTIME1 = 3000.0 ! Initial times for GEOS files
LDAS%GEOSTIME2 = 0.0
LDAS%NROLD = 181
LDAS%NCOLD = 360
LDAS%NMIF = 13 ! Number of forcing variables for model init.
option
/

	Table of Contents
	Table of Contents	ii
	List of Figures
	List of Tables
	Table 1: LIS global data files	19
	1 Introduction
	1.1 Purpose and goals
	1.2 Scope

	2 Land Surface Modeling and Data Assimilation
	2.1 Land Data Assimilation System (LDAS)
	2.2 Community Land Model (CLM)
	2.3 The Community NOAH Land Surface Model
	2.4 Variable Infiltration Capacity (VIC) Model

	3 LIS software architecture
	3.1 Software data structures

	4 Hardware Platforms for LIS
	4.1 LIS cluster architecture
	4.2 Network traffic estimation within the cluster

	5 High performance computing in LIS
	5.1 Parallel processing in land surface modeling
	5.2 Land surface modeling in LIS
	5.2.1 Structure of land surface modeling component
	5.2.2 Implementation of land surface modeling component

	5.3 Compute node job processing
	5.4 IO node job processing

	6 Data Management in LIS
	6.1 Data flow and volume in LIS
	6.2 GrADS-DODS server structure
	6.3 Description for data retrieving component
	6.3.1 Implementation

	7 Description for system monitoring component
	7.1 Hardware monitoring data
	7.2 Architecture and implementation

	8 User interface design
	8.1 User interface components
	8.2 Sample prototype interface
	8.3 User levels and security design

	References
	Appendix A
	List of LDAS variables passed between the modules (Following ALMA Convention)

	Appendix B
	Sample input card file for the execution of LIS model run

